[1] Wang, Z. (*), Srinivasan, R.S. A review of artificial intelligence based building energy use prediction: Contrasting the capabilities of single and ensemble prediction models. Renewable and Sustainable Energy Reviews, 2017, 75: 796-808. (SCI收录,影响因子12.110,2019-2022 ESI高被引论文)
[2] Wang, Z., Wang, Y. (*), Zeng, R., Srinivasan, R.S., Ahrentzen, S. Random Forest based hourly building energy prediction. Energy and Buildings, 2018, 171: 11-25. (SCI收录,影响因子4.867,2018 ESI高被引论文)
[3] Wang, Z., Wang, Y. (*), Srinivasan, R.S. A novel ensemble learning approach to support building energy use prediction. Energy and Buildings, 2018, 159: 109-122. (SCI收录,影响因子4.867,2020-2022 ESI高被引论文)
[4] Wang, Z., Liu J., Zhang Y. (*), Yuan H., Zhang R., Srinivasan S. Practical issues in implementing machine-learning models for building energy efficiency: Moving beyond obstacles. Renewable and Sustainable Energy Reviews, 2021, 143: 110929. (SCI收录,影响因子12.110)
[5] Wang, Z., Xia, L., Yuan, H., Srinivasan, S. Zhang, Y. Principles, research status, and prospects of feature engineering for data-driven building energy prediction: A comprehensive review. Journal of Building Engineering, 2022, 58:105028. (SCI收录,影响因子7.144)
[6] Wang, Z., Srinivasan, R.S. Classification of Household Appliance Operation Cycles: A Case-study Approach. Energies. 2015, 8: 10522-10536. (SCI收录,影响因子2.702)
[7] Wang, Z. (*), Srinivasan, R.S., Shi, J. Artificial intelligence models for improved prediction of residential space heating. Journal of Energy Engineering (ASCE), 2016, 142, 4. (SCI收录,影响因子1.341)
[8] Zhang, R., Tang, R., Wang, L., Wang Z. Factors Influencing BIM Adoption for Construction Enterprises in China. Advances in Civil Engineering, 2020, 8848965. (SCI收录,影响因子1.176)
[9] Wu H., Xue X., Zhao Z. (*), Wang Z., Shen G. Q., Luo X. Major knowledge diffusion Paths of mega-project management: A citation-based analysis. Project Management Journal, 2020, 51(3): 242-261. (SCI收录,影响因子2.506)
[10]Zhang R. (*), Wang Z., Tang Y., Zhang Y. Collaborative innovation for sustainable construction: The case of an industrial construction project network. IEEE Access, 2020, 8: 41403-41417. (SCI收录,影响因子3.745)